Engineering entropy-driven reactions and networks catalyzed by DNA.

نویسندگان

  • David Yu Zhang
  • Andrew J Turberfield
  • Bernard Yurke
  • Erik Winfree
چکیده

Artificial biochemical circuits are likely to play as large a role in biological engineering as electrical circuits have played in the engineering of electromechanical devices. Toward that end, nucleic acids provide a designable substrate for the regulation of biochemical reactions. However, it has been difficult to incorporate signal amplification components. We introduce a design strategy that allows a specified input oligonucleotide to catalyze the release of a specified output oligonucleotide, which in turn can serve as a catalyst for other reactions. This reaction, which is driven forward by the configurational entropy of the released molecule, provides an amplifying circuit element that is simple, fast, modular, composable, and robust. We have constructed and characterized several circuits that amplify nucleic acid signals, including a feedforward cascade with quadratic kinetics and a positive feedback circuit with exponential growth kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Suzuki and Sonogashira coupling reactions catalyzed by Pd/DNA@MWCNTs in green solvents and under mild conditions

The palladium nanoparticles were immobilized on DNA-modified multi walled carbon nanotubes as stable and powerful heterogeneous catalyst. The catalyst was characterized by FT-IR spectroscopy, UV-Vis spectroscopy, field emission scanning electron microscopy, X-ray diffraction, transmission electron microscopy, inductively coupled plasma and elemental analysis. DNA as a well-defined structure and...

متن کامل

Entropy-based Serviceability Assessment of Water Distribution Networks, Subjected to Natural and Man-Made Hazards

In this study a modified entropy-based measure is presented for evaluating the serviceability level of water distribution networks in which the hydraulic uncertainties (flow rates in pipes) as well as the uncertainties due to mechanical parameters (failure probabilities of links) are considered simultaneously. In the proposed entropy calculation method, the connectivity order of the network dem...

متن کامل

Thermodynamic of Interaction between Some Water-Soluble Porphyrins and DNA by Titration Microcalorimetry

In the present work, the interaction of three water soluble porphyrins, tetra (p-trimethyle) ammoniumphenyl porphyrin iodide (TAPP) as a cationic porphyrin, tetra sodium meso-tetrakis (p-sulphonatophenyle) porphyrin (TSPP) as an anionic porphyrin and manganese tetrakis (p-sulphonato phenyl)porphinato acetate (MnTSPP) as a metal porphyrin, with DNA have been studied by isothermaltitration microc...

متن کامل

Studies on the Binding of DNA with the Inclusion of Brilliant Green inside the Cavity of γ-Cyclodextrin

The interaction of brilliant green with herring sperm DNA was investigated in detail by spectrometric methods in γ-cyclodextrin systems. On the condition of physiological pH, brilliant green prefers to form the 1:1 inclusion complex with γ-cyclodextrin.All the evidences indicated that the binding modes between γ-cyclode...

متن کامل

Modeling of Reversible Chain Transfer Catalyzed Polymerization by Moment Equations Method

A moment equations method was performed to study the Reversible chain Transfer Catalyzed Polymerization (RTCP) of styrene in 80°C. To do this, a kinetic scheme containing conventional free radical polymerization reactions and equilibrium reactions of RTCP was assumed. After obtaining mass balance equations, three moment equations were defined for free and dormant radicals and dead chains. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 318 5853  شماره 

صفحات  -

تاریخ انتشار 2007